Package: ordinalForest 2.4-4
ordinalForest: Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables
The ordinal forest (OF) method allows ordinal regression with high-dimensional and low-dimensional data. After having constructed an OF prediction rule using a training dataset, it can be used to predict the values of the ordinal target variable for new observations. Moreover, by means of the (permutation-based) variable importance measure of OF, it is also possible to rank the covariates with respect to their importance in the prediction of the values of the ordinal target variable. OF is presented in Hornung (2020). NOTE: Starting with package version 2.4, it is also possible to obtain class probability predictions in addition to the class point predictions. Moreover, the variable importance values can also be based on the class probability predictions. Preliminary results indicate that this might lead to a better discrimination between influential and non-influential covariates. The main functions of the package are: ordfor() (construction of OF) and predict.ordfor() (prediction of the target variable values of new observations). References: Hornung R. (2020) Ordinal Forests. Journal of Classification 37, 4–17. <doi:10.1007/s00357-018-9302-x>.
Authors:
ordinalForest_2.4-4.tar.gz
ordinalForest_2.4-4.zip(r-4.5)ordinalForest_2.4-4.zip(r-4.4)ordinalForest_2.4-4.zip(r-4.3)
ordinalForest_2.4-4.tgz(r-4.4-x86_64)ordinalForest_2.4-4.tgz(r-4.4-arm64)ordinalForest_2.4-4.tgz(r-4.3-x86_64)ordinalForest_2.4-4.tgz(r-4.3-arm64)
ordinalForest_2.4-4.tar.gz(r-4.5-noble)ordinalForest_2.4-4.tar.gz(r-4.4-noble)
ordinalForest_2.4-4.tgz(r-4.4-emscripten)ordinalForest_2.4-4.tgz(r-4.3-emscripten)
ordinalForest.pdf |ordinalForest.html✨
ordinalForest/json (API)
# Install 'ordinalForest' in R: |
install.packages('ordinalForest', repos = c('https://romanhornung.r-universe.dev', 'https://cloud.r-project.org')) |
- hearth - Data on Coronary Artery Disease
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 24 days agofrom:af4a30f389. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win-x86_64 | OK | Nov 18 2024 |
R-4.5-linux-x86_64 | OK | Nov 18 2024 |
R-4.4-win-x86_64 | OK | Nov 18 2024 |
R-4.4-mac-x86_64 | OK | Nov 18 2024 |
R-4.4-mac-aarch64 | OK | Nov 18 2024 |
R-4.3-win-x86_64 | OK | Nov 18 2024 |
R-4.3-mac-x86_64 | OK | Nov 18 2024 |
R-4.3-mac-aarch64 | OK | Nov 18 2024 |
Exports:ordforperff_customperff_equalperff_oneclassperff_proportional
Dependencies:bootCircStatscombinatdotCall64dtwfieldsmapsMASSnnetproxyRcppspamverificationviridisLite
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables | ordinalForest-package ordinalForest |
Data on Coronary Artery Disease | hearth |
Ordinal forests | ordfor |
Performance functions based on Youden's J statistic | perff perff_custom perff_equal perff_oneclass perff_proportional |
Prediction using ordinal forest objects | predict.ordfor |