
Package: prioritylasso (via r-universe)
September 4, 2024

Type Package

Title Analyzing Multiple Omics Data with an Offset Approach

Version 0.3.2

Author Simon Klau, Roman Hornung, Alina Bauer, Jonas Hagenberg

Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>

Description Priority-LASSO (Klau et al., 2018) fits successive Lasso
models for several blocks of (omics) data with different
priorities and takes the predicted values as an offset for the
next block. Also offers options to deal with block-wise
missingness in multi-omics data. Reference: Klau, S.,
Jurinovic, V., Hornung, R., Herold, T., Boulesteix, A.-L.
(2018) Priority-Lasso: a simple hierarchical approach to the
prediction of clinical outcome using multi-omics data. BMC
Bioinformatics 19:322, <doi:10.1186/s12859-018-2344-6>.

Depends R (>= 3.5.0)

License GPL-2

LazyData TRUE

Imports survival, glmnet, utils, checkmate

RoxygenNote 7.2.3

Encoding UTF-8

Suggests testthat, knitr, rmarkdown, pROC, bookdown, ipflasso, rlang

VignetteBuilder knitr

NeedsCompilation no

Date/Publication 2019-06-05 13:00:02 UTC

Repository https://romanhornung.r-universe.dev

RemoteUrl https://github.com/romanhornung/prioritylasso

RemoteRef HEAD

RemoteSha d76312e6cb1c8156c61ffdc0b049762fa800c002

1

https://doi.org/10.1186/s12859-018-2344-6

2 calculate_offsets

Contents
calculate_offsets . 2
coef.prioritylasso . 3
compare_boolean . 3
cvm_prioritylasso . 4
missing.control . 6
pl_data . 7
predict.prioritylasso . 8
prioritylasso . 10

Index 15

calculate_offsets Calculates the offsets for the current block

Description

Calculates the offsets for the current block

Usage

calculate_offsets(
current_missings,
current_observations,
mcontrol,
current_block,
pred,
liste,
X,
blocks,
current_intercept

)

Arguments

current_missings

index vector (indices) of current missing observations
current_observations

index vector (indices) of current used observations
mcontrol control for missing data handling
current_block index of current block
pred predictions of current block
liste list with offsets
X original data
blocks information which variable belongs to which block
current_intercept

the intercept estimated for the current block

coef.prioritylasso 3

Value

list with offsets, used imputation model and the blocks used for the imputation model (if applicable)

coef.prioritylasso Extract coefficients from a prioritylasso object

Description

Extract coefficients from a prioritylasso object

Usage

S3 method for class 'prioritylasso'
coef(object, ...)

Arguments

object model of type prioritylasso

... additional arguments, currently not used

Value

List with the coefficients and the intercepts

compare_boolean Compare the rows of a matrix with a pattern

Description

Compare the rows of a matrix with a pattern

Usage

compare_boolean(object, pattern)

Arguments

object matrix

pattern pattern which is compared against the rows of the matrix

Value

logical vector if the pattern matches the rows

4 cvm_prioritylasso

cvm_prioritylasso prioritylasso with several block specifications

Description

Runs prioritylasso for a list of block specifications and gives the best results in terms of cv error.

Usage

cvm_prioritylasso(
X,
Y,
weights,
family,
type.measure,
blocks.list,
max.coef.list = NULL,
block1.penalization = TRUE,
lambda.type = "lambda.min",
standardize = TRUE,
nfolds = 10,
foldid,
cvoffset = FALSE,
cvoffsetnfolds = 10,
...

)

Arguments

X a (nxp) matrix of predictors with observations in rows and predictors in columns.

Y n-vector giving the value of the response (either continuous, numeric-binary 0/1,
or Surv object).

weights observation weights. Default is 1 for each observation.

family should be "gaussian" for continuous Y, "binomial" for binary Y, "cox" for Y of
type Surv.

type.measure accuracy/error measure computed in cross-validation. It should be "class" (clas-
sification error) or "auc" (area under the ROC curve) if family="binomial",
"mse" (mean squared error) if family="gaussian" and "deviance" if family="cox"
which uses the partial-likelihood.

blocks.list list of the format list(list(bp1=...,bp2=...,), list(bp1=,...,bp2=...,),
...). For the specification of the entries, see prioritylasso.

max.coef.list list of max.coef vectors. The first entries are omitted if block1.penalization
= FALSE. Default is NULL.

block1.penalization

whether the first block should be penalized. Default is TRUE.

cvm_prioritylasso 5

lambda.type specifies the value of lambda used for the predictions. lambda.min gives lambda
with minimum cross-validated errors. lambda.1se gives the largest value of
lambda such that the error is within 1 standard error of the minimum. Note that
lambda.1se can only be chosen without restrictions of max.coef.

standardize logical, whether the predictors should be standardized or not. Default is TRUE.

nfolds the number of CV procedure folds.

foldid an optional vector of values between 1 and nfold identifying what fold each
observation is in.

cvoffset logical, whether CV should be used to estimate the offsets. Default is FALSE.

cvoffsetnfolds the number of folds in the CV procedure that is performed to estimate the offsets.
Default is 10. Only relevant if cvoffset=TRUE.

... other arguments that can be passed to the function prioritylasso.

Value

object of class cvm_prioritylasso with the following elements. If these elements are lists, they
contain the results for each penalized block of the best result.

lambda.ind list with indices of lambda for lambda.type.

lambda.type type of lambda which is used for the predictions.

lambda.min list with values of lambda for lambda.type.

min.cvm list with the mean cross-validated errors for lambda.type.

nzero list with numbers of non-zero coefficients for lambda.type.

glmnet.fit list of fitted glmnet objects.

name a text string indicating type of measure.

block1unpen if block1.penalization = FALSE, the results of either the fitted glm or coxph ob-
ject.

best.blocks character vector with the indices of the best block specification.

best.blocks.indices list with the indices of the best block specification ordered by best to worst.

best.max.coef vector with the number of maximal coefficients corresponding to best.blocks.

best.model complete prioritylasso model of the best solution.

coefficients coefficients according to the results obtained with best.blocks.

call the function call.

Note

The function description and the first example are based on the R package ipflasso.

Author(s)

Simon Klau
Maintainer: Roman Hornung (<hornung@ibe.med.uni-muenchen.de>)

6 missing.control

References

Klau, S., Jurinovic, V., Hornung, R., Herold, T., Boulesteix, A.-L. (2018). Priority-Lasso: a simple
hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinfor-
matics 19, 322

See Also

pl_data, prioritylasso, cvr2.ipflasso

Examples

cvm_prioritylasso(X = matrix(rnorm(50*500),50,500), Y = rnorm(50), family = "gaussian",
type.measure = "mse", lambda.type = "lambda.min", nfolds = 5,
blocks.list = list(list(bp1=1:75, bp2=76:200, bp3=201:500),

list(bp1=1:75, bp2=201:500, bp3=76:200)))
Not run:
cvm_prioritylasso(X = pl_data[,1:1028], Y = pl_data[,1029], family = "binomial",

type.measure = "auc", standardize = FALSE, block1.penalization = FALSE,
blocks.list = list(list(1:4, 5:9, 10:28, 29:1028),

list(1:4, 5:9, 29:1028, 10:28)),
max.coef.list = list(c(Inf, Inf, Inf, 10), c(Inf, Inf, 10, Inf)))

End(Not run)

missing.control Construct control structures for handling of missing data for
prioritylasso

Description

Construct control structures for handling of missing data for prioritylasso

Usage

missing.control(
handle.missingdata = c("none", "ignore", "impute.offset"),
offset.firstblock = c("zero", "intercept"),
impute.offset.cases = c("complete.cases", "available.cases"),
nfolds.imputation = 10,
lambda.imputation = c("lambda.min", "lambda.1se"),
perc.comp.cases.warning = 0.3,
threshold.available.cases = 30,
select.available.cases = c("maximise.blocks", "max")

)

pl_data 7

Arguments

handle.missingdata

how blockwise missing data should be treated. Default is none which does noth-
ing, ignore ignores the observations with missing data for the current block,
impute.offset imputes the offset for the missing values.

offset.firstblock

determines if the offset of the first block for missing observations is zero or the
intercept of the observed values for handle.missingdata = ignore

impute.offset.cases

which cases/observations should be used for the imputation model to impute
missing offsets. Supported are complete cases (additional constraint is that every
observation can only contain one missing block) and all available observations
which have an overlap with the current block.

nfolds.imputation

nfolds for the glmnet of the imputation model
lambda.imputation

which lambda-value should be used for predicting the imputed offsets in cv.glmnet
perc.comp.cases.warning

percentage of complete cases when a warning is issued of too few cases for the
imputation model

threshold.available.cases

if the number of available cases for impute.offset.cases = available.cases
is below this threshold, prioritylasso tries to reduce the number of blocks
taken into account for the imputation model to increase the number of observa-
tions used for the imputation model.

select.available.cases

determines how the blocks which are used for the imputation model are selected
when impute.offset.cases = available.cases. max selects the blocks that
maximise the number of observations, maximise.blocks tries to include as
many blocks as possible, starting with the blocks with the hightes priority

Value

list with control parameters

pl_data Simulated AML data with binary outcome

Description

A data set containing the binary outcome and 1028 predictor variables of 400 artificial AML pa-
tients.

Usage

pl_data

8 predict.prioritylasso

Format

A data frame with 400 rows and 1029 variables:

pl_out: (pl_data[,1029]) binary outcome representing refractory status.

b1: (pl_data[,1:4]) 4 binary variables representing variables with a known influence on the out-
come.

b2: (pl_data[,5:9]) 5 continuous variables representing clinical variables.

b3: (pl_data[,10:28]) 19 binary variables representing mutations.

b4: (pl_data[,29:1028]) 1000 continuous variables representing gene expression data.

Details

We generated the data in the following way: We took the empirical correlation of 1028 variables
related to 315 AML patients. This correlation served as a correlation matrix when generating 1028
multivariate normally distributed variables with the R function rmvnorm. Because we didn’t have
a positive definite matrix, we took the nearest positive definite matrix according to the function
nearPD. The variables that should be binary were dichotomized, so that their marginal probabilities
corresponded to the marginal probabilities they were based on. The coefficients were defined by

• beta_b1 <- c(0.8, 0.8, 0.6, 0.6)

• beta_b2 <- c(rep(0.5,3), rep(0,2))

• beta_b3 <- c(rep(0.4, 4), rep(0,15))

• beta_b4 <- c(rep(0.5, 5), rep(0.3, 5), rep(0,990)).

We included them in the vector beta <- c(beta_b1, beta_b2, beta_b3, beta_b4) and calculated
the probability through

pi = exp(β ∗ x)/(1 + exp(β ∗ x))

where x denotes our data matrix with 1028 predictor variables. Finally we got the outcome through
pl_out <- rbinom(400, size = 1, p = pi).

predict.prioritylasso Predictions from prioritylasso

Description

Makes predictions for a prioritylasso object. It can be chosen between linear predictors or fitted
values.

predict.prioritylasso 9

Usage

S3 method for class 'prioritylasso'
predict(
object,
newdata = NULL,
type = c("link", "response"),
handle.missingtestdata = c("none", "omit.prediction", "set.zero", "impute.block"),
include.allintercepts = FALSE,
use.blocks = "all",
...

)

Arguments

object An object of class prioritylasso.

newdata (nnew x p) matrix or data frame with new values.

type Specifies the type of predictions. link gives the linear predictors for all types of
response and response gives the fitted values.

handle.missingtestdata

Specifies how to deal with missing data in the test data; possibilities are none,
omit.prediction, set.zero and impute.block

include.allintercepts

should the intercepts from all blocks included in the prediction? If FALSE, only
the intercept from the first block is included (default in the past).

use.blocks determines which blocks are used for the prediction, the default is all. Otherwise
one can specify the number of blocks which are used in a vector

... Further arguments passed to or from other methods.

Details

handle.missingtestdata specifies how to deal with missing data. The default none cannot han-
dle missing data, omit.prediction does not make a prediction for observations with missing val-
ues and return NA. set.zero ignores the missing data for the calculation of the prediction (the
missing value is set to zero). impute.block uses an imputation model to impute the offset of a
missing block. This only works if the prioritylasso object was fitted with handle.missingdata =
"impute.offset". If impute.offset.cases = "complete.cases" was used, then every obser-
vation can have only one missing block. For observations with more than one missing block, NA
is returned. If impute.offset.cases = "available.cases" was used, the missingness pattern in
the test data has to be the same as in the train data. For observations with an unknown missingness
pattern, NA is returned.

Value

Predictions that depend on type.

Author(s)

Simon Klau

10 prioritylasso

See Also

pl_data, prioritylasso

Examples

pl_bin <- prioritylasso(X = matrix(rnorm(50*190),50,190), Y = rbinom(50,1,0.5),
family = "binomial", type.measure = "auc",
blocks = list(block1=1:13,block2=14:80, block3=81:190),
block1.penalization = TRUE, lambda.type = "lambda.min",
standardize = FALSE, nfolds = 3)

newdata_bin <- matrix(rnorm(10*190),10,190)

predict(object = pl_bin, newdata = newdata_bin, type = "response")

prioritylasso Patient outcome prediction based on multi-omics data taking practi-
tioners’ preferences into account

Description

Fits successive Lasso models for several ordered blocks of (omics) data and takes the predicted
values as an offset for the next block.

Usage

prioritylasso(
X,
Y,
weights,
family = c("gaussian", "binomial", "cox"),
type.measure,
blocks,
max.coef = NULL,
block1.penalization = TRUE,
lambda.type = "lambda.min",
standardize = TRUE,
nfolds = 10,
foldid,
cvoffset = FALSE,
cvoffsetnfolds = 10,
mcontrol = missing.control(),
scale.y = FALSE,
return.x = TRUE,
...

)

prioritylasso 11

Arguments

X a (nxp) matrix of predictors with observations in rows and predictors in columns.

Y n-vector giving the value of the response (either continuous, numeric-binary 0/1,
or Surv object).

weights observation weights. Default is 1 for each observation.

family should be "gaussian" for continuous Y, "binomial" for binary Y, "cox" for Y of
type Surv.

type.measure accuracy/error measure computed in cross-validation. It should be "class" (clas-
sification error) or "auc" (area under the ROC curve) if family="binomial",
"mse" (mean squared error) if family="gaussian" and "deviance" if family="cox"
which uses the partial-likelihood.

blocks list of the format list(bp1=...,bp2=...,), where the dots should be replaced
by the indices of the predictors included in this block. The blocks should form
a partition of 1:p.

max.coef vector with integer values which specify the number of maximal coefficients
for each block. The first entry is omitted if block1.penalization = FALSE.
Default is NULL.

block1.penalization

whether the first block should be penalized. Default is TRUE.

lambda.type specifies the value of lambda used for the predictions. lambda.min gives lambda
with minimum cross-validated errors. lambda.1se gives the largest value of
lambda such that the error is within 1 standard error of the minimum. Note that
lambda.1se can only be chosen without restrictions of max.coef.

standardize logical, whether the predictors should be standardized or not. Default is TRUE.

nfolds the number of CV procedure folds.

foldid an optional vector of values between 1 and nfold identifying what fold each
observation is in.

cvoffset logical, whether CV should be used to estimate the offsets. Default is FALSE.

cvoffsetnfolds the number of folds in the CV procedure that is performed to estimate the offsets.
Default is 10. Only relevant if cvoffset=TRUE.

mcontrol controls how to deal with blockwise missing data. For details see below or
missing.control.

scale.y determines if y gets scaled before passed to glmnet. Can only be used for family
= 'gaussian'.

return.x logical, determines if the input data should be returned by prioritylasso. De-
fault is TRUE.

... other arguments that can be passed to the function cv.glmnet.

Details

For block1.penalization = TRUE, the function fits a Lasso model for each block. First, a standard
Lasso for the first entry of blocks (block of priority 1) is fitted. The predictions are then taken
as an offset in the Lasso fit of the block of priority 2, etc. For block1.penalization = FALSE,

12 prioritylasso

the function fits a model without penalty to the block of priority 1 (recommended as a block with
clinical predictors where p < n). This is either a generalized linear model for family "gaussian" or
"binomial", or a Cox model. The predicted values are then taken as an offset in the following Lasso
fit of the block with priority 2, etc.

The first entry of blocks contains the indices of variables of the block with priority 1 (first block
included in the model). Assume that blocks = list(1:100, 101:200, 201:300) then the block
with priority 1 consists of the first 100 variables of the data matrix. Analogously, the block with
priority 2 consists of the variables 101 to 200 and the block with priority 3 of the variables 201 to
300.

standardize = TRUE leads to a standardisation of the covariables (X) in glmnet which is recom-
mend by glmnet. In case of an unpenalized first block, the covariables for the first block are not
standardized. Please note that the returned coefficients are rescaled to the original scale of the co-
variates as provided in X. Therefore, new data in predict.prioritylasso should be on the same
scale as X.

To use the method with blockwise missing data, one can set handle.missingdata = ignore. Then,
to calculate the coefficients for a given block only the observations with values for this blocks are
used. For the observations with missing values, the result from the previous block is used as the
offset for the next block. Crossvalidated offsets are not supported with handle.missingdata =
ignore. Please note that dealing with single missing values is not supported. Normally, every
observation gets a unique foldid which stays the same across all blocks for the call to cv.glmnet.
However when handle.missingdata != none, the foldid is set new for every block.

Value

object of class prioritylasso with the following elements. If these elements are lists, they contain
the results for each penalized block.

lambda.ind list with indices of lambda for lambda.type.

lambda.type type of lambda which is used for the predictions.

lambda.min list with values of lambda for lambda.type.

min.cvm list with the mean cross-validated errors for lambda.type.

nzero list with numbers of non-zero coefficients for lambda.type.

glmnet.fit list of fitted glmnet objects.

name a text string indicating type of measure.

block1unpen if block1.penalization = FALSE, the results of either the fitted glm or coxph object
corresponding to best.blocks.

coefficients vector of estimated coefficients. If block1.penalization = FALSE and family =
gaussian or binomial, the first entry contains an intercept.

call the function call.

X the original data used for the calculation or NA if return.x = FALSE

missing.data list with logical entries for every block which observation is missing (TRUE means
missing)

imputation.models if handle.missingdata = "impute.offsets", it contains the used imputa-
tion models

prioritylasso 13

blocks.used.for.imputation if handle.missingdata = "impute.offsets", it contains the blocks
which were used for the imputation model for every block

y.scale.param if scale.y = TRUE, then it contains the mean and sd used for scaling.

blocks list with the description which variables belong to which block

mcontrol the missing control settings used

family the family of the fitted data

dim.x the dimension of the used training data

Note

The function description and the first example are based on the R package ipflasso. The second
example is inspired by the example of cv.glmnet from the glmnet package.

Author(s)

Simon Klau, Roman Hornung, Alina Bauer
Maintainer: Roman Hornung (<hornung@ibe.med.uni-muenchen.de>)

References

Klau, S., Jurinovic, V., Hornung, R., Herold, T., Boulesteix, A.-L. (2018). Priority-Lasso: a simple
hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinfor-
matics 19, 322

See Also

pl_data, cvm_prioritylasso, cvr.ipflasso, cvr2.ipflasso, missing.control

Examples

gaussian
prioritylasso(X = matrix(rnorm(50*500),50,500), Y = rnorm(50), family = "gaussian",

type.measure = "mse", blocks = list(bp1=1:75, bp2=76:200, bp3=201:500),
max.coef = c(Inf,8,5), block1.penalization = TRUE,

lambda.type = "lambda.min", standardize = TRUE, nfolds = 5, cvoffset = FALSE)
Not run:

cox
simulation of survival data:
n <- 50;p <- 300
nzc <- trunc(p/10)
x <- matrix(rnorm(n*p), n, p)
beta <- rnorm(nzc)
fx <- x[, seq(nzc)]%*%beta/3
hx <- exp(fx)
survival times:
ty <- rexp(n,hx)
censoring indicator:
tcens <- rbinom(n = n,prob = .3,size = 1)
library(survival)
y <- Surv(ty, 1-tcens)

14 prioritylasso

blocks <- list(bp1=1:20, bp2=21:200, bp3=201:300)
run prioritylasso:
prioritylasso(x, y, family = "cox", type.measure = "deviance", blocks = blocks,

block1.penalization = TRUE, lambda.type = "lambda.min", standardize = TRUE,
nfolds = 5)

binomial
using pl_data:
prioritylasso(X = pl_data[,1:1028], Y = pl_data[,1029], family = "binomial", type.measure = "auc",

blocks = list(bp1=1:4, bp2=5:9, bp3=10:28, bp4=29:1028), standardize = FALSE)
End(Not run)

Index

∗ datasets
pl_data, 7

calculate_offsets, 2
coef.prioritylasso, 3
compare_boolean, 3
cv.glmnet, 13
cvm_prioritylasso, 4, 13
cvr.ipflasso, 13
cvr2.ipflasso, 6, 13

missing.control, 6, 11, 13

nearPD, 8

pl_data, 6, 7, 10, 13
predict.prioritylasso, 8
prioritylasso, 4, 6, 10, 10

rmvnorm, 8

15

	calculate_offsets
	coef.prioritylasso
	compare_boolean
	cvm_prioritylasso
	missing.control
	pl_data
	predict.prioritylasso
	prioritylasso
	Index

